Skip to main content
Log in

Vegetation of Upper Coastal Plain depression wetlands: Environmental templates and wetland dynamics within a landscape framework

  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Reference wetlands play an important role in efforts to protect wetlands and assess wetland condition. Because wetland vegetation integrates the influence of many ecological factors, a useful reference system would identify natural vegetation types and include models relating vegetation to important regional geomorphic, hydrologic, and geochemical properties. Across the U.S. Atlantic Coastal Plain, depression wetlands are a major hydrogeomorphic class with diverse characteristics. For 57 functional depression wetlands in the Upper Coastal Plain of South Carolina, we characterized the principal vegetation types and used a landscape framework to assess how local (wetland-level) factors and regional landscape settings potentially influence vegetation composition and dynamics. Wetland sites were stratified across three Upper Coastal Plain landscape settings that differ in soils, surface geology, topography, and land use. We sampled plant composition, measured relevant local variables, and analyzed historical transitions in vegetative cover types. Cluster analysis identified six vegetation types, ranging from open-water ponds and emergent marshes to closed forests. Significant vegetation-environment relationships suggested environmental “templates” for plant community development. Of all local factors examined, wetland hydrologic regime was most strongly correlated with vegetation type, but depression size, soil textural type, and disturbance history were also significant. Because hydrogeologic settings influence wetland features, local factors important to vegetation were partly predictable from landscape setting, and thus wetland types were distributed non-randomly across landscape settings. Analysis of long-term vegetation change indicated relative stability in some wetlands and succession in others. We developed a landscape-contingent model for vegetation dynamics, with hydroperiod and fire as major driving variables. The wetland classification, environmental templates, and dynamics model provide a reference framework to guide conservation priorities and suggest possible outcomes of restoration or management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Bailey, R. G., P. E. Avers, T. King, and W. H. McNab. 1994. Ecoregions and subregions of the United States. US Department of Agriculture Forest Service, Washington, DC. USA.

    Google Scholar 

  • Bedford, B. L. 1996. The need to define hydrologic equivalence at the landscape scale for freshwater wetland mitigation. Ecological Applications 6:57–68.

    Article  Google Scholar 

  • Bennett, S. H. and J. B. Nelson. 1991. Distribution and status of Carolina bays in South Carolina. South Carolina Wildlife and Marine Resources Department, Columbia, SC, USA. Nongame and Heritage Trust Publication No. 1.

    Google Scholar 

  • Brinson, M. M. 1993. A hydrogeomorphic classification for wetlands. U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS, USA. WRP-DE-4.

    Google Scholar 

  • Brinson, M. M. and R. Rheinhardt. 1996. The role of reference wetlands in functional assessment and mitigation. Ecological Applications 6:69–76.

    Article  Google Scholar 

  • Chmielewski, R. M. 1996. Hydrologic analysis of Carolina bay wetlands at the Savannah River Site, South Carolina. M.S. Thesis. University of Wisconsin-Milwaukee, Milwaukee, WI, USA.

    Google Scholar 

  • Christensen, N. L. 1988. Vegetation of the Southeastern Coastal Plain. p. 317–363. In M. G. Barbour and W. D. Billings (eds.) North American Terrestrial Vegetation. Cambridge University Press. New York, NY, USA.

    Google Scholar 

  • Clewell, A. F. and R. Lea. 1990. Creation and restoration of forested wetland vegetation in the southeastern United States. p. 195–231. In J. A. Kusler and M. E. Kentula (eds.) Wetland Creation and Restoration: the Status of the Science. Island Press, Covelo, CA, USA.

    Google Scholar 

  • Collins, B. S. and L. L. Battaglia. 2001. Hydrology effects on propagule bank expression and vegetation in six Carolina bays. Community Ecology 2:21–33.

    Article  Google Scholar 

  • Doering, J. A. 1960. Quaternary surface formations of southern part of Atlantic Coastal Plain. Journal of Geology 68:182–202.

    Article  Google Scholar 

  • Dufrêne, M. and P. Legendre. 1997. Species assemblages and indicator species: the need for a flexible asymmetric approach. Ecological Monographs 67:345–366.

    Google Scholar 

  • Edwards, A. L. and A. S. Weakley. 2001. Population biology and management of rare plants in depression wetlands of the Southeastern Coastal Plain, USA. Natural Areas Journal 21:12–35.

    Google Scholar 

  • Environmental Law Institute 2001. Focus on SWANCC. National Wetlands Newsletter 23(2):1–17.

    Google Scholar 

  • Ewel, K. C. 1998. Pondcypress swamps. p. 405–420. In M. G. Messian and W. H. Conner (eds.) Southern Forested Wetlands: Ecology and Management. Lewis Publishers, Boca Raton, FL, USA.

    Google Scholar 

  • Folkerts, G. W. 1997. Citronelle ponds: little-known wetlands of the central Gulf Coastal Plain, USA. Natural Areas Journal 17:6–16.

    Google Scholar 

  • Galatowitsch, S. M. and A. G. van der Valk. 1996. The vegetation of restored and natural prairie wetlands. Ecological Applications 6:102–112.

    Article  Google Scholar 

  • Godwin, K. S., J. P. Shallenberger, D. J. Leopold, and B. L. Bedford. 2002. Linking landscape properties to local hydrogeologic gradients and plant species occurrence in minerotrophic fens of New York State, USA: a hydrogeologic setting (HGS) framework. Wetlands 22:722–737.

    Article  Google Scholar 

  • Gwin, S. E., M. E. Kentula, and P. W. Shaffer. 1999. Evaluating the effects of wetland regulation through hydrogeomorphic classification and landscape profiles. Wetlands 19:477–489.

    Article  Google Scholar 

  • Haukos, D. A. and L. M. Smith. 1994. Composition of seed banks along an elevational gradient in playa wetlands. Wetlands 14:301–307.

    Google Scholar 

  • Hendricks, E. L. and M. H. Goodwin. 1952. Water-level fluctuations in limestone sinks in southwestern Georgia. U.S. Geological Survey Water-Supply Paper 1110-E.

  • Jones, S. M., D. H. Van Lear, and S. K. Cox. 1984. A vegetationlandform classification of forest sites within the upper Coastal Plain of South Carolina. Bulletin of the Torrey Botanical Club 111:349–360.

    Article  Google Scholar 

  • Kantrud, H. A., J. B. Millar, and A. G. van der Valk. 1989. Vegetation of wetlands of the prairie pothole region. p 132–187. In A. G. van der Valk (ed.) Northern Prairie Wetlands. Iowa State University Press, Ames, IA, USA.

    Google Scholar 

  • Kirkman, L. K. 1995. Impacts of fires and hydrological regimes on vegetation in depression wetlands of southeastern USA. p. 10–20. In S. I. Cerulean and R. T. Engstrom (eds.) Fire in wetlands: a management perspective. Proceedings of the 19th Tall Timbers Fire Ecology Conference, Tall Timbers Research Station, Talla-hassee, FL, USA.

  • Kirkman, L. K., M. B. Drew, L. T. West, and E. R. Blood. 1998. Ecotone characterization between upland longleaf pine/wiregrass stands and seasonally-ponded isolated wetlands. Wetlands 18: 346–364.

    Article  Google Scholar 

  • Kirkman, L. K., P. C. Goebel, L. West, M. B. Drew, and B. J. Palik. 2000. Depressional wetland vegetation types: a question of plant community development. Wetlands 20:373–385.

    Article  Google Scholar 

  • Kirkman, L. K., S. W. Golladay, L. Laclaire, and R. Sutter. 1999. Biodiversity in southeastern, seasonally ponded, isolated wetlands: management and policy perspectives for research and conservation. Journal of the North American Benthological Society 18: 553–562

    Article  Google Scholar 

  • Kirkman, L. K., R. F. Lide, G. Wein, and R. R. Sharitz. 1996. Vegetation changes and land-use legacies of depression wetlands of the western Coastal Plain of South Carolina: 1951–1992. Wetlands 16:564–576.

    Google Scholar 

  • Lide, R. F. 1997. When is a depression wetland a Carolina bay? Southeastern Geographer 37:90–98.

    Google Scholar 

  • Lide, R. F., V. G. Meentemeyer, J. E. Pinder III, and L. M. Beatty. 1995. Hydrology of a Carolina bay located on the Upper Coastal Plain of western South Carolina. Wetlands 15:47–57.

    Article  Google Scholar 

  • McCune, B. and J. B. Grace. 2002. Analysis of Ecological Communities. MjM Software Design, Gleneden Beach, OR, USA.

    Google Scholar 

  • McCune, B. and M. J. Mefford. 1995. PC-ORD. Multivariate Analysis of Ecological Data, Version 2.0. MjM Software Design, Gleneden Beach, OR, USA.

    Google Scholar 

  • Myers, R. K., R. Zahner, and S. M. Jones. 1986. Forest Habitat Regions of South Carolina from Landsat Imagery. Clemson University, Clemson, SC, USA. Forest Research Series No. 42.

    Google Scholar 

  • National Ocean and Atmospheric Administration, 1993-1996. Climatological data for South Carolina, 1993–1996. National Climatic Data Center, Asheville, NC, USA.

    Google Scholar 

  • Nifong, T. D. 1998. An ecosystematic analysis of Carolina bays in the Coastal Plain of the Carolinas. Ph.D. Dissertation. University of North Carolina. Chapel Hill, NC, USA.

    Google Scholar 

  • Nystrom, P. G. Jr., R. H. Willoughby, and L. E. Kite. 1986. Cretaceous-Tertiary stratigraphy of the upper edge of the Coastal Plain between North Augusta and Lexington, South Carolina. South Carolina Geological Survey, Columbia, SC, USA.

    Google Scholar 

  • Palik, B. J., P. C. Goebel, L. K. Kirkman, and L. West. 2000. Using landscape hierarchies to guide restoration of disturbed ecosystems. Ecological Applications 10:189–202.

    Article  Google Scholar 

  • Pechmann, J. H. K., D. E. Scott, J. W. Gibbons, and R. D. Semlitsch. 1989. Influence of wetland hydroperiod on diversity and abundance of metamorphosing juvenile amphibians. Wetlands Ecology and Management 1:3–11.

    Article  Google Scholar 

  • Peet, R. K. 1980. Ordination as a tool for analyzing complex data sets. Vegetatio 42:171–174.

    Article  Google Scholar 

  • Pickett, S. T. A. and V. T. Parker. 1994. Avoiding the old pitfalls: opportunities in a new discipline. Restoration Ecology 2:75–79.

    Article  Google Scholar 

  • Poiani, K. A. and P. M. Dixon. 1995. Seed banks of Carolina bays: potential contributions from surrounding landscape vegetation. American Midland Naturalist 135:140–154.

    Article  Google Scholar 

  • Poiani, K. A. and W. C. Johnson. 1991. Global warming and prairie wetlands. Bioscience 41:611–618.

    Article  Google Scholar 

  • Porcher, R. D. 1966. A floristic study of the vascular plants in nine selected Carolina bays in Berkeley County, South Carolina. M.S. Thesis. University of South Carolina, Columbia, SC, USA.

    Google Scholar 

  • Prowell, D. C. 1994. Preliminary geologic map of the Barnwell 30′ × 60′ quadrangle, South Carolina and Georgia. U.S. Geological Survey Open-File Report 94-673.

  • Rader, R. B. and D. K. Shiozawa. 2001. General principles of establishing a bioassessment program. p. 13–43. In R. B. Rader, D. P., Batzer, and S. A. Wissinger (eds.) Bioassessment and Management of North American Freshwater Wetlands. John Wiley and Sons, New York, NY, USA.

    Google Scholar 

  • Reed, P. B., Jr. 1988. National list of plant species that occur in wetlands: national summary. U.S. Fish and Wildlife Service, Washington, DC, USA. Biological Report 88(24).

    Google Scholar 

  • Schalles, J. F., R. R. Sharitz, J. W. Gibbons, G. J. Leversee, and J. N. Knox. 1989. Carolina Bays of the Savannah River Plant. US Department of Energy Savannah River Plant, National Environmental Research Park Program. Aiken, SC, USA. SRONERP-18.

    Google Scholar 

  • Schalles, J. F. and D. J. Shure. 1989. Hydrology, community structure, and productivity patterns of a dystrophic Carolina bay wetland. Ecological Monographs 59:365–385.

    Article  Google Scholar 

  • Semlitsch, R. D. and J. R. Bodie. 1998. Are small, isolated wetlands expendable? Conservation Biology 12:1129–1133.

    Article  Google Scholar 

  • Sharitz, R. R. and C. A. Gresham. 1998. Pocosins and Carolina bays. p. 343–377. In M. G. Messina and W. H. Conner (eds.) Southern Forested Wetlands: Ecology and Management. Lewis Publishers. Boca Raton, FL, USA.

    Google Scholar 

  • Singer, J. H. 2001. Effects of overstory removal and fire on wetland vegetation and recruitment from the seedbank in a hydrologically restored Carolina bay wetland. M.S. Thesis. University of Georgia, Athens, GA, USA.

    Google Scholar 

  • Smith, R. D., A. Ammann, C. Bartoldus, and M. M. Brinson. 1995. An approach for assessing wetland functions using hydrogeomorphic classification, reference wetlands, and functional indices. U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS, USA. WRP-DE-9.

    Google Scholar 

  • Snodgrass, J. W., M. J. Komoroski, A. L. Bryan, Jr., and J. Burger. 2000. Relationships among isolated wetland size, hydroperiod, and amphibian species richness: implications for wetland regulations. Conservation Biology 14:414–419.

    Article  Google Scholar 

  • Soil Survey Staff 1975. Soil Taxonomy. US Department of Agriculture, Washington, DC, USA: Handbook 436.

    Google Scholar 

  • Stewart, R. E. and H. A. Kantrud. 1971. Classification of natural ponds and lakes in the glaciated prairie region. U.S. Bureau of Sport Fisheries and Wildlife. Washington, DC, USA. Resource Publication 92.

    Google Scholar 

  • Sun, G., S. G. McNulty, J. P. Shepard, D. M. Amatya, H. Riekerk, N. B. Comerford, W. Skaggs, and L. Swift, Jr. 2001. Effects of timber management on the hydrology of wetland forests in the southern United States. Forest Ecology and Management 143: 227–236.

    Article  Google Scholar 

  • Tangen, B. A., M. G. Butler, and M. J. Ell. 2003. Weak correspondence between macroinvertebrate assemblages and land use in Prairie Pothole Region wetlands, USA. Wetlands 23:104–115.

    Article  Google Scholar 

  • Taylor, B. E., D. A. Leeper, M. A. McClure, and A. E. DeBiase. 1999. Carolina bays: ecology of aquatic invertebrates and perspectives on conservation. p. 167–195 In D. P. Batzer, R. B. Rader, and S. A. Wissinger (eds.) Invertebrates in Freshwater Wetlands of North America: Ecology and Management. John Wiley & Sons, Inc, New York, NY, USA.

    Google Scholar 

  • ter Braak, C. J. F. 1993. CANOCO—a FORTRAN Program for Canonical Community Ordination. Version 3.12, Microcomputer Power, Ithaca, NY, USA.

    Google Scholar 

  • ter Braak, C. J. F. 1995. Ordination. p. 91–173. In R. H. G. Jongman. C. J. F. ter Braak, and O. F. R. van Tongeren (eds.) Data Analysis in Community and Landscape Ecology. Cambridge University Press, Cambridge, England.

    Google Scholar 

  • van der Valk, A. G. and C. B. Davis. 1978. The role of seed banks in the vegetation dynamics of prairie glacial marshes. Ecology 59: 322–335.

    Article  Google Scholar 

  • Weakley, A. S. and M. P. Schafale. 1990. Classification of the natural communities of North Carolina. Third approximation. North Carolina Natural Heritage Program, Department of Environment, Health, and Natural Resources. Raleigh, NC, USA.

    Google Scholar 

  • Wear, D. N. and J. G. Greis. 2002. Southern Forest Resource Assessment: summary of findings. Journal of Forestry 100(7): 6–14.

    Google Scholar 

  • Whipple, S. A., L. H. Wellman, and B. J. Good 1981. A classification of hardwood and swamp forests on the Savannah River Plant, South Carolina. U.S. Department of Energy Savannah River Plant, National Environmental Research Park Program, Aiken, SC, USA. SRO-NERP-6.

    Google Scholar 

  • Wilcox, D. A., J. E. Meeker, P. L. Hudson, B. J. Armitage, M. G. Black, and D. G. Uzarski. 2002. Hydrologic variability and the application of index of biotic integrity metrics to wetlands: a Great Lakes evaluation. Wetlands 22:588–615.

    Article  Google Scholar 

  • Workman, S. W. and K. W. McLeod. 1990. Vegetation of the Savannah River Site: major community types. U.S. Department of Energy Savannah River Site, National Environmental Research Park Program, Aiken, SC, USA. SRO-NERP-19.

    Google Scholar 

  • Zar, J. H. 1999. Biostatistical Analysis, fourth edition. Prentice Hall, Upper Saddle River, NJ, USA.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Steven, D., Toner, M.M. Vegetation of Upper Coastal Plain depression wetlands: Environmental templates and wetland dynamics within a landscape framework. Wetlands 24, 23–42 (2004). https://doi.org/10.1672/0277-5212(2004)024[0023:VOUCPD]2.0.CO;2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1672/0277-5212(2004)024[0023:VOUCPD]2.0.CO;2

Key Words

Navigation